EPGsim.EPGStates
EPGsim.EPGStates
EPGsim.epgDephasing!
EPGsim.epgRelaxation!
EPGsim.epgRotation!
EPGsim.epgRotation!
EPGsim.rfRotation
EPGsim.EPGStates
— TypeEPGStates{T <: Real}
Stores the EPG states in 3 vectors Fp,Fn and Z.
Constructors :
EPGStates(Fp::Vector{Complex{S}},Fn::Vector{Complex{S}},Z::Vector{Complex{S}}) where {S <: Real}
EPGStates(Fp::T=0,Fn::T=0,Z::T=1) where T <: Number
Fields
Fp::Vector{Complex{T}}
Fn::Vector{Complex{T}}
Z::Vector{Complex{T}}
Related functions
getStates(E::EPGStates)
: extract EPG states as matrix 3xN
EPGsim.EPGStates
— MethodgetStates(E::EPGStates)
Extract EPG states as matrix 3xN
EPGsim.epgDephasing!
— FunctionepgDephasing!(E::EPGStates, n=1) where T
shifts the transverse dephasing states F
corresponding to n dephasing-cycles. n can be any integer
EPGsim.epgRelaxation!
— MethodepgRelaxation!(E::EPGStates,t,T1, T2)
applies relaxation matrices to a set of EPG states.
Arguments
E::EPGStates
t::AbstractFloat
- length of time intervalT1::AbstractFloat
- T1T2::AbstractFloat
- T2
EPGsim.epgRotation!
— FunctionepgRotation!(E::EPGStates, alpha::Float64, phi::Float64=0.0)
applies Bloch-rotation (<=> RF pulse) to a set of EPG states.
Arguments
E::EPGStates
`alpha::Float64
- flip angle of the RF pulse (rad)phi::Float64=0.0
- phase of the RF pulse (rad)
EPGsim.epgRotation!
— MethodepgRotation!(E::EPGStates, R::Matrix)
applies rotation matrix from rfRotation
function to the EPGStates
Arguments
E::EPGStates
`R::Matrix
- rotation Matrix (rad)
EPGsim.rfRotation
— FunctionrfRotation(alpha, phi=0.)
returns the rotation matrix for a pulse with flip angle alpha
and phase phi
.
Arguments
alpha
- flip angle (radian)phi=0.
- phase of the flip angle (radian)