EPGsim.EPGStatesEPGsim.EPGStatesEPGsim.epgDephasing!EPGsim.epgRelaxation!EPGsim.epgRotation!EPGsim.epgRotation!EPGsim.rfRotation
EPGsim.EPGStates — TypeEPGStates{T <: Real}Stores the EPG states in 3 vectors Fp,Fn and Z.
Constructors :
EPGStates(Fp::Vector{Complex{S}},Fn::Vector{Complex{S}},Z::Vector{Complex{S}}) where {S <: Real}
EPGStates(Fp::T=0,Fn::T=0,Z::T=1) where T <: NumberFields
Fp::Vector{Complex{T}}Fn::Vector{Complex{T}}Z::Vector{Complex{T}}
Related functions
getStates(E::EPGStates): extract EPG states as matrix 3xN
EPGsim.EPGStates — MethodgetStates(E::EPGStates)Extract EPG states as matrix 3xN
EPGsim.epgDephasing! — FunctionepgDephasing!(E::EPGStates, n=1) where Tshifts the transverse dephasing states F corresponding to n dephasing-cycles. n can be any integer
EPGsim.epgRelaxation! — MethodepgRelaxation!(E::EPGStates,t,T1, T2)applies relaxation matrices to a set of EPG states.
Arguments
E::EPGStatest::AbstractFloat- length of time intervalT1::AbstractFloat- T1T2::AbstractFloat- T2
EPGsim.epgRotation! — FunctionepgRotation!(E::EPGStates, alpha::Float64, phi::Float64=0.0)applies Bloch-rotation (<=> RF pulse) to a set of EPG states.
Arguments
E::EPGStates`alpha::Float64- flip angle of the RF pulse (rad)phi::Float64=0.0- phase of the RF pulse (rad)
EPGsim.epgRotation! — MethodepgRotation!(E::EPGStates, R::Matrix)applies rotation matrix from rfRotation function to the EPGStates
Arguments
E::EPGStates`R::Matrix- rotation Matrix (rad)
EPGsim.rfRotation — FunctionrfRotation(alpha, phi=0.)returns the rotation matrix for a pulse with flip angle alpha and phase phi.
Arguments
alpha- flip angle (radian)phi=0.- phase of the flip angle (radian)