EPGsim.EPGStatesType
EPGStates{T <: Real}

Stores the EPG states in 3 vectors Fp,Fn and Z.

Constructors :

EPGStates(Fp::Vector{Complex{S}},Fn::Vector{Complex{S}},Z::Vector{Complex{S}}) where {S <: Real}
EPGStates(Fp::T=0,Fn::T=0,Z::T=1) where T <: Number

Fields

  • Fp::Vector{Complex{T}}
  • Fn::Vector{Complex{T}}
  • Z::Vector{Complex{T}}

Related functions

  • getStates(E::EPGStates) : extract EPG states as matrix 3xN
source
EPGsim.epgDephasing!Function
epgDephasing!(E::EPGStates, n=1) where T

shifts the transverse dephasing states F corresponding to n dephasing-cycles. n can be any integer

source
EPGsim.epgRelaxation!Method
epgRelaxation!(E::EPGStates,t,T1, T2)

applies relaxation matrices to a set of EPG states.

Arguments

  • E::EPGStates
  • t::AbstractFloat - length of time interval
  • T1::AbstractFloat - T1
  • T2::AbstractFloat - T2
source
EPGsim.epgRotation!Function
epgRotation!(E::EPGStates, alpha::Float64, phi::Float64=0.0)

applies Bloch-rotation (<=> RF pulse) to a set of EPG states.

Arguments

  • E::EPGStates`
  • alpha::Float64 - flip angle of the RF pulse (rad)
  • phi::Float64=0.0 - phase of the RF pulse (rad)
source
EPGsim.epgRotation!Method
epgRotation!(E::EPGStates, R::Matrix)

applies rotation matrix from rfRotation function to the EPGStates

Arguments

  • E::EPGStates`
  • R::Matrix - rotation Matrix (rad)
source
EPGsim.rfRotationFunction
rfRotation(alpha, phi=0.)

returns the rotation matrix for a pulse with flip angle alpha and phase phi.

Arguments

  • alpha - flip angle (radian)
  • phi=0. - phase of the flip angle (radian)
source